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1. Statement of scientific work done during the reporting period

\) He & i-h v s
The first objective we pursued was to build some test problems in the area of linear and

nonlinear complementarity problems in order to be able to verify the practical value of our algo-
rithms before submitting them to a detailed mathematical analysis. A large variety of problems
of different difficulty belongs to the area of linear and nonlinear complementarity; to start our
investigation we have considered three problems that come from the discretization of variational

JEESITSSSERIE S

/'
inequalities of mathematical physics*{y¢e~Appen The first two problems are linear com-

plementarity problems; the third one is a nonlinear complementarity problem. The corresponding
continuous problems involve ordinary or partial differential operators so that when discretized a
large number (up to a few thousand) independent variables can be considered. For these prob-
lems existence and uniqueness of the solution can be proved; moreover, they have some intrinsic
interest given their  mathematical physics interpretation. A FORTRAN ‘computer code imple-

menting these three complementarity problems has been written.

The complementarity problems considered above have been translated into a system of non-
linear equationss{see-Appendix~#:2)" On the resulting systems of nonlinear equations the algo-

P R
rithm DAF NE)(‘I'!f‘“{‘IH?]‘f&}-) based on the use of ordinary differential equations and the algo-

\
rithm SIGMA,‘(ref “f4};-15], {6} based on the use of stochastic differential equations have been

used. ; T T

For a system of nonlinear equations with n-independent variables DAFNE solves an n X n
Jinear system at each step so that with n on the order of one thousand the comp;.ltational cost of
iL: lincar algebra is substantial. To avoid this difficulty zn inexact-DAFNE algorithm in the
spirit of [7] has been proposed (see Appendix 4.2) and tested on the test problems with satisfac-

tory results.

At the momenv tuc performance of SICMA on p.ollem with hundreds of independent vari-

ables is unsatisfactory.
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2. Research plans for the irnmediate future R
v.",
In the immediate future we plan to pursue the following objectives: '\'
h

(i) carry out a mathematical analysis of the inexact-DAFNE algorithm considered in i
Appendix 4.3 L
II\)
(ii) investigate how to adapt the SIGMA algorithm to work on problems involving ! ' )
thousands of independent variables ; .;.\
(iii) study the behavior of our methods on linear and nonlinear complementarity problems l -
where existence and uniqueness of solution is not guaranteed. I ;. i
3

8. Administrative actions Eoay
Cald
The following investigators are working on the contract: t’.'
X
(i) Francesco Zirilli %
Dipartimento di Matematica ““G. Castelnuovo” N
Universita di Roma “La Sapienza” oy

00185 Roma (Italy)

LA

(ii) Filippo Aluffi-Pentini
Dipartimento di Matematica { x

Universita di Bari .
80125 Bari (Italy) [
I
(ii) Valerio Parisi oo
Dipartimento di Fisica -
I Universita di Roma (Tor Vergata) N
00173 Roma (Italy) a
F
During the period September 1, 1886 - December 31, 1986 Francesco Zirilli will be visiting: -
o
Department of Mathematical Sciences N
Rice University - P.O. Box 1892 ‘ ‘ |
Houston, Texas 77251 (U.S.A) ‘ ]
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4. Appendices Y

Appendix 4.1. Test Problems

2

Let R* be the n-dimensional real euclidean space, let gz =(z,,2,....,z,)T € R*, and for

3 !'..l

z,3€R" let <2'Jl \/ =zTy=1Y2y; be the scalar product between z and y and h

o)) A,

”Il|=<z,;> the euclidean norm of z. -
'J

o

The first problem considered arises as a one-dimensional free-boundary problem in the lubri-

4

cation theory of an infinite journal bearing, i.e. a rotating cylinder separated from a bearing sur- 1

-
-
-

face by a thin film of lubricating fluid ref [8]. The finite-difference approximation used by Cryer

0-..-’
-_a

S

in [8] leads to

Problem A (called Problem 3D by Cryer): Find z, w € R such that ﬁ::
5 {
N
w=g+Mz, w20 20, (4.1.1) 3
<g,£> =0, (4.1.2) |
|."' $
where M =((M;;)), {,j =1,2,...,n is an n X n matrix with elements M;; given by :';" X
» .l
M; = -(Him), ifj=i+1, )
My = ((He)® + (Hin), i 5 =1, ;s
y‘ h" 5
i = —(Hixn)®, ifj=1¢-1, (4.1.3) RN
W
Cte
M; =0, otherwise : E':_
and g =(g),92, -+ g,)7 is a vector with elements g; given by | ! :
¢ = T [Heow-Hix), 1=12,..n (4.1.4) ::..::
' n + 1 g (] ’ r & :_'.
where o
L
. T o
Hogn = H((§ %) ) (419) :
w
and the function H(y) is given by -_..':_‘
-
- .
o
Y
)
NS
a7y
- 2
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(y) =2 (Y-y¥,

or(y) =% (W-y), if y <W,

gr(y)=0, ify>Ww,

gp(z) = Y?/2- (Y- W?)(z/2X),

gu(z) =0,

r;j =~-Dz Dy +6;18 9.(5 Dy)+6;s a gr(j Dy)

+6;;(1/a) gp(¢ Dz) + ba,;(1/8) gu(i Dz),
1=12..,n,;, 1=12.,n,.
The elements q,, g2, ..., g, of g are given by
g = Tij» with k = (]""1) Ny +l. (4.1.10)

Our last problem, which is defined below, can be interpreted as a finite-difference approxi-

mation of a nonlinear variational inequality.

Problem C: Find z,w € R" such that
w=Mg+pullet(z)+g, w>0, z2>0 (4.1.15)
<yz,1\/ =0 (4.1.16)
The problem dimension n, the quantities Dz, Dy and the matrix M are defined as in problem B,
given n,, n,, X, Y. The nonlinear term p(z) is a vector in R* with components p; =z3,

t=1,..,n. The vector ¢=(g;,92,-..,qa)7 is defined by equation (4.1.10) where

r; =Dz Dysin(2riDz /X),{ = 1,2,...,n,, 5 =1,2,..,n,.
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Appendix 4.2. The system of nonlinear equations

Problem 1 (Linear complementarity problem). Let M be an n Xn real matrix and g € R".

Find w,z€R" such that

w=g+Mz, w>0, 220, (4.2.1)
(.W,I\/ = 0, (4.2.2)

where w > 0 and z > 0 mean that each component of w and g is greater than or equal to zero.
~ Problem £ (Nonlinear complementarity problem). Let f:R®* —R"® be a given map. Find

Z €R" such that

z20, fz)=20 (4.2.3)

(L(z),z> =0. (4.2.4)

A complementarity problem can be reformulated as a problem of solving a system of non-
linear equations, as follows.

Let ©: R— R a strictly increasing function such that ©(0})=0. As it was shown by Man-
gasarian (ref. [10]), z solves the nonlinear complementarity problem (4.2.3), (4.2.4) (Problem 2) if
and only if z solves the system of nonlinear equations

o:(z) = 6(|f:la)~=1)-6(filz))- ©(z;) =0, =12,.,n, (4.2.5)
where z =(z,, 23,...,2,)7 and [ = (f1,f2 .. fa)T- '

Problem 1 is a special case of (4.2.5) when f(z)=4g + Mz.
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Appendix 4.3. The inexact-DAFNE algorithm o
v
S
~.
w5
In the following we choose ©(t)=1/2 so that the nonlinear complementarity problem ~J
(Problem 2) is equivalent to s :
. <
a2(z)=20 (4.3.1) it
where n(‘g)z(g 1(&)1 ﬂz(i)y sy 9.(?.))T GR. and ‘e
9:(z) =2 (] f:lz)~= | - 1:(2)-=%) N
=-min(z,-,/,-(z)), = 1,2,...,7[ . :::
For the linear complementarity problem (Problem 1), it is enough to choose f(z)=g + Mz. .::-
We note that g(z) is not everywhere-differentiable; however if z° is a non-degenerate solu-
tion of the complementarity problem (Problem 2), i.e. such that z° + £(z°) > 0, then, in a neigh- (‘-!' :
bourhood of z°, g(z) has at least the same regularity properties of f(z). Moreover, as shown by "’:
Mangasarian {10}, if all the principal minors of the jacobian of f(z) are non-singular at z° then o
3
the jacobian of g at z° is non-singular. R
We consider now the problem of solving the system of simultaneous equations (4.3.1) and e,
assume that f is regular enough to justify what follows. We define .f
l'f
T N2 "::
G(z)=4"(2) 2(z) = ¥ ¢}(2); (4.3.2) N
i=1 N
it is easy to see that z° is an isolated solution of (4.3.1) if and only if G(z°)=0 and z° is an iso- ,
-
lated (global) minimizer of G(z). o
.f 0
Incerti, Parisi and Zirilli [11] proposed the following second-order system of ordinary :::
differential equations L}
d°z dz
oy =-fD -E-VG(Z)» (4.3.3) e
where pu, B are positive constants, D is an n X n symmetric positive matrix and where G is the 2
gradient of G with respect to z. The equations (4.3.3) represent Newton's second law I::'
S

(mass X acceleration = force) for a particle of mass g moving in R* subject to the force -9G

-

e LR L™ _" N

dz . .
given by the potential G and to the force —-8D -‘% Since 8> 0 the force - 8D -d%- is a dissipa-

b Tt /
2er

‘-‘-\

~
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tive force.

If z° is such that G(z°)==0, z° is a (global) minimizer of g(z), and z(¢)=z" is a solution

of (4.3.3). Consider the Cauchy data:

d,
0 =2, ===, (43.4)
and let z(t, 2o, vo) be the solution of the initial value problem (4.3.3), (4.3.4). Then if #> 0 under
some mild assumptions on G(z) it can be shown that if ||zo~z" || and ||go|| are small enough

then

lim |}2(¢, 20, 20)-2" || =0, (4.3.5)
8o that we try to solve the original problem (4.3.1) by computing the solution z(¢,zo, o) of (4.3.3)
(4.3.4) for suitable zo, vo.
The performance of this method to solve the nonlinear system (4.3.1) is greatly dependent
on the numerical scheme used to solve (4.3.3), (4.3.4).
Several numerical schemes to solve (4.3.3), (4.3.4) have been considered by Aluffi, Incerti,
Zirilli {12, [13] and the simplest linearly implicit A-stable scheme among those proposed by Lam-
bert and Sigurdsson {14] has been chosen. Finally, for the corresponding algorithms to solve the

nonlinear system (4.3.1) Zirilli [1] carrie&ut a local convergence and rate of convergence
analysis.
Let y €ER™, ¢(t,y) be a regular function fror. R X R™ to R™ and consider the initial

vaiae problem:

_‘%. = 4(t,2), (4.3.6)
2(0) = yo. (4.3.7)

The class of the linear k-step finite-differences schemes with variable matrix coefficients intro-

duced by Lambert and Sigurdsson [14] to solve (4.3.6), (4.3.7) is given by the formula:

k s k -1
Y @I+ Y b e Que; = b 3 (6O + T KN, (438)

=0 r=1 y=0 r=]
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where A > 0 is the time integration step-length, t; =th, &,;(,3). Moreover Q; is an m X m

[
matrix such that, for all ¢, || Q; || < g = constant and a1+ Y hTaNQ! is pon-singular. We

re]
note that when
af) =0, r=1,2..,6, 5=0,1,.,k
and
bf)=0, r=12..,6-1, j=01,.,k

the class (4.3.8) reduces to the class of linear k-step methods with scalar coefficients.

Some of the methods contained in (4.3.8) are A-stable in the sense of Dahlquist and linearly
implicit; that is, to compute a step only 4 linear system must be solved. The simplest method
with these properties is given by the formula

(I~h®; Xsis-w) = hdi, (4.3.9)

where ¢; = —é:-(t.,y,) is the jacobian of ¢ with rwpect toy.

After rewriting (4.3.3) as a first order system:

d
"d‘_f' =2,
(4.3.10)
dy B 1
—=-=Dy-—vG(z),
7 D= (z)
i-1
formula (4.3.9) with variable time-integration step-length &; (i.e. =Y A;,i=1,2,..,4,=0) is
=0
applied to compute the trajectory of (4.3.3), (4.3.4).
In (4.3.10) the map ¢ is given by
z
¢: i (.11
Ny - .} 1 4.3.11
~=Dy-—=vG(z
p VGl )
so that its jacobian ¢ is given by
q> 0 I
11w _Bp (4.3.12)
b
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where

"- ' -
(W T ST

L(z) = 2[JT(2)(2)+ ¥ 0:z) Hi(z)], (4.3.13)
=l
)
J(z)= g—:: is the jacobian of g with respect to z and H(z) i the hessian of ¢(z).

We consider here the algorithm implemented in the DAFNE package (Aluffi-Pentini, Parisi,

Zirilli, [2], [3]). Let

& =Za-&, 1=012, - (4.3.14)

Applying (4.3.9) to (4.3.10) we obtain after some simple algebra

A ELL L LAAR V2L LS,

N 4l s =G+ B,
N [L.+h'_ h€I+ﬂD)]_¢. VG'+h,-'"'
N By = -:1- i=0,1,2 - (4.3.15)
E where L; = L(&), VG, =vG(&) With respect to g the iteration (4.3.14) (4.3.15) as it stands
[
o depends on “first-order information” (i.e. J{z) the jacobian of g) and on “second-order informa-
o)
o tion” (i.~. the second derivatives of g contained in L(z)). Since we are interested in solving the
- nonlinear system (4.3.1) the need of second-order information with respect to g is a serious handi-
:: cap of the methods based on (4.3.15) when compared to Newton or Quasi-Newton methods. To
A avoid this inconvenience, L(z) in (4.3.15) has been substituted with
- L(z)=2J7(z)J(z) (4.3.16)
{ n " -
. We note that the term Y ¢;(z)H;(z) that we have dropped in substituting L to L is zero at the
. i=1
solutions z* of (4.3.1). Iteration (4.3.15) is therefore replaced by
N
5 Aigi = bi,
- . 4.3.17
. L’+l=%‘—! '.=011;2r". ( )
- i
3 where
"
: A =L+ (£ 1+8D),
. hi " h;




b=-v G.~+~f_—.w, (4.3.18)

with L ; =L (&).

Since A; is an n X n symmetric and positive-definite matrix the linear system in (4.3.17) can
be solved by the conjugate-gradients (C.G.) method introduced by Fletcher and Reeves [15]. This
procedure solves an n X n linear system in at most n steps. However, since we plan to apply the
present method to large problems (n =<1000), in order to save computational effort we solve the
linear system in (4.3.17) only in an inexact way, by stopping the C.G. procedure after a pumber
of steps which is usually considerably lower than n; this is performed by means of the following

stopping criterion. Let g*) be the (approximate) value for the solution s; of the linear system in

(4.3.17) obtained as the result of step k of the C.G. procedure. The iteration is stopped after step
m if
HA™ -8 117 < s (18112 (4.3.19)
where n; is a given relative error tolerance for the basic step (4.3.17) such that lim 5; =0.
100
We pote that if z; is converging to a so! .tion of (4.3.1) we have lim || || =0. Similar
1 —+00

ideas have been introduced for Newton method by Dembo, Eisenstat, and Steihaug {7]. Finally
we observe that when h; — co the step (4.3.17) degenerates into the Newton step for the nonlinear
system (4.3.11), so that under suitable assumptions on g(z), A; and n;, local and superlinear con-

vergence can be proved for the algorithm.

A complete mathematical analysis of this algorithm will be carried out later.
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A class of algorithms derived from the ones used in the packa-~ gg
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ge DAFNE and based on the numerical integration of a Cauchy problem )
-." t
for a system of ordinary differential equations inspired by classic }:f
o
al mechanics has been eveloped. These algorithms require the solu- j&‘
!
. . . )
tion of an N x N linear system of equations at each step, the cost #
of solving this linear system when a large number of unknowns N is aﬁ
¢
. l'!'
involved is the most important part of the computation. The linear :‘
system is solved by an iterative procedure (i.e. conjugate gra- 2§
dients) and only an approximate solution is computed (i.e. the co- ]
W
njugate gradient procedure is stopped after a number m of steps “g
“ §
depending on the norm cf the residual, 0< m < N). For these algo- “}
<
rithms local convergence and Q-superlinear rate of convergence has j
been proved. The algorithms have been used to solve three comple- ;ﬁ
. . c s . L W,
mentarity problems derived from variational inequalities of mathe- K
2,
-
w matical physics very successfully. The complementarity problems ;l
' considered had up to 900 variables. The results previously describ- N
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ed are contained in section 4. o
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Q) . for an ordinary differential equation.
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4. Appendix: "An inexact continuous method for the solution of lar-

ge systems of equation and complementarity problems”" by F. Aluf-
# fi-Pentini, V. Parisi, F. Zirilli.
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The manuscript on this appendix has been submitted for publica
] tion on Mathematical Programming
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e 1. Introduction
3:"
‘m. ’
1Y N . . .
;i Let R be the N-dimensional real euclidean space, let
o T N N
§=(x1’x2""’xN) € R be a vector,and for x,y e R let
Lot . 1
,'" <X,¥y> = X X,V lIxll = <x,x>2 be the euclidean scalar
ﬁ' product and norm; when necessary ||+|] will indicate also the
LR

matrix norm induced by the euclidean vector norm. Given
.
N N . .

::::' f + R +1R we will be concerned with two classes of problems
;ﬂ.A in this paper: the problem of solving the system of simulta-
Ny
) .
bt neous nonlinear equations
L.

(1.1) f(x) = 0

' N
i that is:find x¥* € R such that f(x%*) = 0, and the complemen-
\ ) - - = -

™
pﬁ tarity problem
X
"‘-_:.,

- (1.2) x>0
*":
P (1.3)  £(x) > 0

o)

w (1.4) <x,f(x)> = 0
.’P

Ei where x > 0 means x, 2 0, i=1,2,...,N,and similarly f(x) > 0
.-."

e means fi(x) > 0, i=1,2,...,N, fi(x) being the components of
N X 2z a :

.;f f, that is:find x* such that: x* > 0, f(x*) > 0, <x*,f(x¥)>=0.
v The importance of the problem of solving a system of

’l'_.

? simultaneous equations is well known. When £(§)=A§+E is an
ﬁﬂ affine map the (linear) complementarity problem has been con
Py
A sidered by Cottle and Dantzig in [l] and contains as special
2
R
)

.
'
4
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)
cases the linear programming and the quadratic programming ;f
< problem. In the case when f(x) is a possibly nonlinear func- o
| tion of x the (nonlinear) complementarity problem is a ra- ;J
ther general problem and contains as special cases the ’
Kuhn-Tucker first-order necessary conditions for the non- Eﬁ
linear programming problem and has been widely studied; see i_
for example Gould and Tolle [2]. ;
The linear and nonlinear complementarity problems have ﬁ
applications in such diverse areas of flow in porous media %'
(3], image reconstruction (4], [5], game theory [6]. L
In this paper we will be concerned with the problem of ‘éf
the numerical solution of nonlinear systems of equations and .l
complementarity problems. Usually complementarity problems SQ
are approached numerically with pivotal methods (for example 2.
the simplex method for linear programming). The pivotal §:
methods are usually of the "step by step" improvement type, Séf
that is given a problem for:which a solution is sought the .
standard approach is to attempt to define recursively a se- Yﬁ
quence of approximate solutions which have the basic proper- E'
ty of making an improvement in a suitable "objective func- AL
tion". When the problem satisfies some convexity and/or mono- _\
tonicity assumptions the pivotal methods are guaranteed to E:
converge and if only a moderate number of independent varia- :i
ble is involved (up to few hundreds) their numerical perfor- %_
mance is satisfactory. ?E
In recent years there has been a growing interest in 3_

-

the use of continuous methods in nonlinear optimization; see

~(
~|
Q. !
‘J v
9 0
"
N
5
i
~
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for example Allgover and Georg (7] for a review of simpli-
cial methods in the computation of fixed points and the solu
tion of nonlinear equations, and Bayer and Lagarias [8] for
the interpretation of Karmarkar's linear programming algo-
rithm as a method that follows a trajectory of a suitable
system of ordinary differential equations. In particular the present
authors have developed a method for solving systems of non
linear equations based on the numerical integration of an
initial-value problem for a system of ordinary differential

equations inspired by classical mechanics (9], {10], [11],

[12]) and a method for global optimization based on the nume-

rical integration of an initial value problem for a system

o g 7

of stochastic differential equations inspired by quantum

mechanics {]3], [14], [15]. In section 2 the algorithms in-

troduced in [10] to solve systems of nonlinear equations are

e

-
-
A

modified to allow for an "inexact" solution of the linear
systems appearing in each iterations in the spirit of Dembo,
Eisenstat and Steihaug [16]. These new algorithms are parti-

cularly effective for problems involving a large number of

PR AN -{.'.-“,' Reile] l“l"

independent variables where the computational cost is domi-
nated by the solution of the linear system at each step. Un-
der suitable hypothesas local convergence and Q-superlinear
convergence of these new "inexact" algorithm for nonlinear
systems of equations is proved. In section 3 the complemen-
tarity problem is transformed into a nonlinear system of
equations following Mangasarian [17] and the algorithms pre-

viously developed provide a class of locally convergent
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L4

m\ Q-superlinear methods for the solution of complementarity
o
g%f' problems. These methods are based on the idea of following
L
@ a trajectory of a suitable system of differential equations
N 2

- inspired by classical mechanics and are not of the '"step by
;Q step" improvement type. Finally in section 4 some numerical
J"

*‘\

y experience obtained with the algorithms of section 2 and 3
on some complementarity problems of mathematical physics is

shown.

Some of the results of this paper have been announced

"y in [18].
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2. Some inexact algorithms for nonlinear systems of equa-

% S e

LA

tions

<

Let £(x) = (£ (x),£.(x),...,f (x)) €R", where £ (x)
- - 1= 2 - N~—= i ="

i=1,2,...,N, are real-valued regular functions defined for -
T N A
X = (XI’XZ""’XN) e R . ]

R
In order to solve the system of simultaneous equation ]
- L]

i}

(2.1) E(x) = 0 ]

we define

LS A

(2.2) F(x)

1
I
|
i
—
1=
1
™
>
1
—_
»

Fa

It is easy to see that x* is an isolated solution of

H

i)

o
S »
R X

W

(2.1) if and only if x* is an isolated minimizer of F(x) and

F{x%) =

0.
In (9], [10], {11], [12] the idea has been proposed and

.-I"

=)

l"

developed of " associating to the nonlinear system (2.1) the .f.

following system of second-order ordinary uifferential equa- :‘

o

tions: "

r

2 )

d"x dx g

(2.3) p— (t) = -gb — (t) - 9F(x(t)) te(0,+=)
2 dt -

dt .

v

where D is a NxN positive symmetric matrix, b, g -ﬁ

are positive constants, VF(x) is the gradient of the function e

F(x) with respect to x. The equation (2.3) represents New-

I LT el

o |
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X

'
)
'V
{ ton's second law (mass x acceleration = force) for a parti- i
N .
cle of mass u moving in IR subject to the force -vF given ?

dx

by the potential F and to the dissipative force -g D E:'
' If x* is an isolated minimizer of F(x) then x(t) = x* ?]
A Vt€[0,+=) is a solution of (2.3); consider the Cauchy data: Q:
. £
. IS
; »
(2.4) x(0) = & : %
(205) dx ."

|

- (0) =

and let z(t’éo’ﬂo) be the solution of the Cauchy problem
(2.3), (2.4), (2.5).

[o

ct

|

o
‘..' ¥ l‘.'..-’t- w‘

~ M
, : 2N £

It can be shown that there exists a neighborhood U€ R |

X s

= 2N | o X
of 0 € R such that if € U we have: ~:
A 1, -
34

5-

(2.6) lim |lx(t,& ,n )-x*| = 0. E
= “0’—0" = =

t + =@ \‘.

\‘_
‘-n
Cj
v

Hence in order the solve the system of nonlinear simultaneous equa i
)

tions by integrating numerically the Cauchy problem (2.3), Ny
N

(2.4), (2.5L we are primarily interested in the equilibrium ;
~

) points reached asymptotically by the trajectories of (2.2) :{
(hopefully solutions of (2.1)) instead than in the accuracy ?\
l.\
of the numerical scheme. So that of particular interest are -3
S Al

numerical methods enjoying a special stability property cal- <

led A-stability [10].
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Let t €ER, let 1,50 e R" and Q(t,z)e R™ be a given function

continuous in t and continuously differentiable with respect

to y, such that the initial-value problem:

(2.7)
(t) = o(t,y) t e (o,+=)

& &

. 0) = :
(2.8) ¥(0) = ¢
has a solution X(t’Eo) for t€[0,+=).
The simplest choice of A-stable linearly implicit me-

thod to integrate numerically (2.7), (2.8) is:

(2.9) (I-h¢n)(y -y ) =h n=0,1,2,...

+1 *n -n

(2.10) Y = &

-0

where Y. is the numerically computed approximation of

y(nh,¢,), I is the identity matrix acting on.Rm, h> 0 is the

stepsize, for n=§,1,z;... tn=nh, 1n=1(tn,zn), ® = o(tn,zn)

where o¢(t,y) = _% is the jacobian of ¢ with respect to y.
We note that whg&:ijt,x) = Ay is a linear map (2.9) reduces
to the backward Euler method.

After rewriting (2.3) as a first-order system

(2.11)

= A
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formulae (2.9), (2.&0{ with variable stepsize hn,n=0,1,...

(i.e. t, =0, tn = 3 hi’ n=1,2,...) are applied to (2.11),
(2.12), (2.4), (2.53T0In this case the map ¢ :ZRZN»LRZN
will be given by

X y
S e
v -%Dv-—lVF(E)

- H

(2.14) *(x)

[}
‘ Q
|
I
~~
| %
e
|
'r:nq -
o
| I |

where

T N
237 (x)J(x) + X £ (x)H. (x)]
X X R R A

(2.15) L(x)

af(x)
J(x) = ™ is the jacobian of f with respect to x and Hi(l)

is the hessian of f (x).

Let s, = X o1 X n=0,1,2,...; after some simple algebra

(2.9) becomes:
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9 A

-.,

"

1 U u

vy =— (e s = 'F. b 4

(2.16) [Ln + h (hn I + gD)] s Fo+ h v, ..,:
W

2.}
s b

n .

(2.17) v = T It
“n+l = h_ n=0,1,2,... )

(2.18) x =X + s \
—n+1 -n -n 3-14
) |

. 35

where L. = L(x ), 9F = VF(x ). In order to avoid the compu- !
h -n n -n [N

tation of Hi(i)’ i=1,2,...,N, at each iteration and since we A

e

age looking for points x* such that f(x*) = 0 the term

p £.(x) H (x) in (2.15) is dropped so that L(x) is substi-
i=1 , 2
tuted with ‘

4
A T N

(2.20) L(x) = 2 J (x)J(x). 'y
:ﬁ

ot

"

Equation (2.16) will be replaced with S

R

(2.21) Als =0b
n

-

N
»

N

-

A

where - :,
o]

v 1 [u b
(2.22) A(x,h) = L(x) + o [H I + gD] :-
o=

and "~
o~

Mg

’i

(2.23) A = A(x ,h ) "

n =n’ n

JEw el L o

>

<
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H
. = —V —
(2.24) En Fn * hn Xn

we note that the matrix An is symmetric and positive defi-

nite.

We have the following theorem:
Theorem 2.1: Let f : ]RN*IRN be twice continuously differen-
tiable, F(x) = ﬁT(i) £(x) and L(x) be given by (2.15). Let
.§*GIRN be‘such that f(x*) = 0, J(x*) is nonsingular (i.e.
x¥* is a nondegenerate solution of the system (2.1)) and the

following Lipschitz condition holds:
(2.25) HL(x) - L(x91l < v ||x-x*|]
Vxe€S = {x]]lx-x*|| <o}

for some constants Y and ¢ greater than zero. In the itera-
tion (2.21), (2.17), (2.18) 1let {hnLn=0,1,2,...,be a sequen-

ce of positive numbers such that

(2.26) lim h ==
n
n-+ o
then there exists h >0 such that for hn> E,n:O,l,...,i* is

a point of attraction of (2.21), (2.17), (2.18) and the rate

of convergence is

-1
. _ . : < .
(i) Q-superlinear if hn < Y1|IVF(§n)|h Y >0, n> no,fop some

Y >
l’no 0

- . , T e A A AT
I R I A A e N N O O S I N A N A A A A AN N NS
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11.

-1 2
. _ . < v s N
(ii) Q-quadratic if hn 2y, §] F(in)!l ’ Y, 0, n > no,for

some Y, ,n >0
2’0

Proof: Let us rewrite (2.21), (2.17), (2.18) as

o -1
(2.27) X .1 g(in,hn) * TTh An (En-in-l) n=0,1,2,...
n n-1
where
(2.28)  G(x,h) = x - Alx,n) ™" VF(x)
with the initial conditions x = ¢ X = §§ -h n , that is
~o =0’ —-1 =o =0

(2.21), (2.17), (2.18) can be interpreted as a two-step ite-
ration. Since x* is a nondegeneraﬁe solution of the system
(2.1) x* is an isolated minimizer of F(x) and VF(x*) = 0.
Moreover for h > 0 the symmetric matrix A(i,h) is positive
definite so that A(E,h)—1 exists that is G(x,h) is well defi
ned for E.E]RN and h >0 and x* is a fixed point of G(x,h).

Let B = HL(E*)—IH and let eE(O,%ﬁ_l) then there exists
§ >0 and k >0 such that:

(2.29) [fL(x*) - A(x,h)[| < e Vxes = (x| {[x-x¥[[<6}
Yh > h

In fact

[IL(x*) - A(x,h)]] < llL(x*)—ﬂf.(y||+|lt(_§)—A(_)_<_,h)l|

-
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f
i
~ b
since L(x*) = L(x*) there exists § such that: X
O]
LY 0l
HL(x*) - L(x))l < 3 ¢ VXES i
- .."
and for a suitable h>0 [
it
1 - i,
(2.30) HL(x)-A(x,n) [l = = |l “E I+gDll < 4¢ Vh>h :
. ::‘:
From (2.29) and the perturbation lemma (lemma 2.3.2 pag. 45 ;:f
of Ortega and Rheinboldt [19]) it follows that A(_)S,h).1 )
satisfies ]
)
-1 B - X
(2.31)  AGxn "Il o= 2=  VvxesS, Vh>h %
3
2
Moreover v
s
':
(2.32) l6(x,h)-x*||<w(x,n)|[x-x*|| ¥xe€s, n>h f
-
1 where &
4 o
b
n )
, (2.33) w(x,h) =a [[|A(x,h)-L(x) [[+{L(x)-L(x*) l+lla(x)|l] S
J ~
and _:
. |.
: '
A 0 X = x¥ >
Q(E) = ::
[9F(x)-9F(x*)-L(x*)(x-x*) || x £ x¥ 2
[l x~x*]|
4
r
’
[

A
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In fact
16(x, n)-x*ll=11ACx,0) 7 [ACx,h) (x-x%) -VF () |
ia{[llA(E,h)-—L(z)I|+HL(§)—t(5*)H]Hz-ﬁ*il +
+I1L(x*) (x-x*) +TF (x*) - TF (x) I} .

Moreover from (2.25) and proposition 3.2.5 pag. 70 of (19]

we have

(2.34) Ha() Il <o Ml x - x*|| VXES.

Hence from (2.30), (2.25) and (2.34) for some constants

az,a3 >0 we have

(2.35) w(x,h) < o + o, [lx-x*|| Vxe€S, h>h

3 -_—— —

=l TS

2

From (2.27), (2.31), (2.32) for x ,x_ , € S and 'nn>ﬁ we have

(2.36) llxn+1—§*"||§||_§(§n,hn)-f"*||+—-—u'—l|A;1[(_)g -x*)+(x*-x )]l

h h n -~ -n-
n n-1

<lulx b )+t T lIx_—x*llp—lix__ -x*Il)

h h h
n n-1 - n n-1
<lagea, me22lllx —xrll+22x  -x*l]

-
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Moreover from (2.35) eventually changing the values of

¢ and h we have

2 '] 1
= - 4 = < =
73 a36 + 5 + 3 )
h
(2.37)
Ha 1
Y = em— -
4 52 2
so that
~x* (] < —-x¥ |+ —
(2.38) g, -xtl<vllx —xellen lx -x*]

with a4 = 73:+ Y4 < 1 that is 5n+1 € S. In particular we

have shown that

(2.39) lim x = x*
n—+ ®
that is x* is a point of attraction of (2.27).
In particular for n> no> 0, anES, using (2.35) the re-

quired order of convergence estimates follow from:

1 Ha
D) - — - - —_— ! -
(2.40) || x ‘1 xH [2 hn +ilx -x|1]11lx x||+h " lix -x —1”

for n> no> 0
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and the fact that
< % —x
(2.41) Il PG ISCILGx) [1ve ) llx_-x]

where 1lim €, = 0.
n—r®

Using the method given by (2.21), (2.17), (2.18) requi-

res the solution of the linear system (2.21) at each step.

Computing the exact solution with a direct method such as

Gaussian elimination is very expensive when a large number

of unknowns is involved and may not be worthwhile when P

k
far from x*. In this case it seems natural to solve the li-

is

near system (2.21) by an iterative procedure and to accept
an approximate solution. In particular since the matrix
An is symmetric and positive definite we may use conjugate
gradients. When then method given by (2.21), (2.17), (2.18)
is used solving (2.21) with an iterative procedure and accep
ting an approximate solution we will describe this procedure
as an inexact method.

Let §

n
ve procedure when solving (2.21) and

be the approximate step computed by the iterati-

(2.42) r = Aé -
-1

be the residual. When r = 0 the linear system is solved

n

exactly and én LI Let us assume that the approximate

step computed én satisfies the following condition:
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Vg d
) (2.43) lHe I < 8 llb Il n=0,1,... :
] 'v
. i
R ‘
Q‘ for some forcing sequence {ﬂn}, n=0,1,... 5
[} ]
! We have the following theorem:

X N :
" Theorem 2.2: Let f: ]RN—»B{ be twice continously differentia '

g

ble, F(x) = fT(E) f(x) and L(x) be given by (2.15). Let 5*E]RN h

kb be such that f(x*) = 0, J(x*) is nonsingular and the follow- .
P ing Lipschitz condition holds:
*
p :
e (2.44) HL(x)-L(x*) [[ <yl x-x*|| ¥x€S={ x| ||x-x¥[|<8}
[)
;*4 for some constants vy, § greater than zero. In the itera-
» tion (2.21), (2.17), (2.18) let {hn}, n=0,1,2,..., be a se-
)
- quence of positive numbers and let the linear system (2.21)
1: be solved approximately in such a way that the residual r K
‘| . .
" given by (2.42) satisfy the condition (2.43) for some forc- it
" i i = e e s o < Q < < :
> ing sequence {Bn}, n=0,1, If 0 Bn < Bmax 1, :
&8 n=0,1,...,then there exists h> 0 such that if hn> h, n=0,1,...,
.: then x* is a point of attraction of the inexact method (2.21), :
[y .
- (2.17), (2.18). g
T

. Proof: Since J(x*) is nonsingular and L(x*) = 2J (x¥)J(x¥)

f we define the following norm: :
3 . . :
] (2.45) Hxll, = HL(x*)x]| Vx €R

. X
é we have

{ ;
o

5

Y ”
fa

\ J
Y.
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; (2.46) = llxll
i H

A

“_)_(_”-" j. Uln_)sll Vx ER

-
-

[y
Z,
U M S W WY YW W

where

27

(2.47)  w, = max CIILGx) I, N0 " D

-
‘\" ’7{1 .I

Moreover it is easy to see that under the stated hypothesis

for any €>0 there exists §>0 and h > 0 such that:

o

(2.48) HA(x,h)-L{x*) ]l <« Vx €S={x]||lx-x*ll<s}, h>h

- o

‘ (2.49)  1AGe,h) " L(x) T I <e Vxes=ix|llx-x*ll<s}, h>h

S AT L

v

(2.50) 1 PF(x)-VF(x*)-L{x*) (x-x%) {l <l x-x*|]

;-

2

¥x€8 = { x| lIx-x|l* <8}

a I n S B 4

We have

3

" (2.51)  L(x*) (& ~x*)=[I+L(x*) (A7 -L(x*)"")]
, - -n+l — = n

- v
-

.

e[r +(A -L{x*))(x -x¥%)-[-b -9F(x*)-L(x%)(X ~-x%)]}
-n n = -n = -n - - 7'=n =

Sy

L4

\ l: l_' [

and taking norms:

-«

(z.52) g -xllel i ILGe AT LG )

PAEESS

. - %* X ~xF l-b -V %)= #) (R -x*
[z e lA LG TR =1+ Il =B -7F(x%)-L(x*) (% _-x*) I]

FANSY

e’

 r . e mt ettt . . P AT SR L RS TS S TP S, VA
ATl el '\.’\.’\ N "."- SN "'\’\ g \"\"xf ot "~.' e . ’5."-."\' \.‘(-\."'x' S A L R A
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from (2.24) if ines and hn>ﬁ using (2.48), (2.49), (2.50)

we have:

-

(2.53) “3n+1"5*”%<-5[““1€][0,'1””(3,1)”*e”gn'i*”‘f

ellx -x*|l+ gh—(lﬂb JONR -xll+ [ xx-% LN
h n n-1

moreover from

;: (2.54) VF(X ) = L(x*)(x -x%)+[VF(% )-VF(x*)-L(x*) (% -x%)]
. n = -n — -n - - n —
b we have
;
)
' X % * X —x
(2.55) HYE(X DI<IZ ~xoll vellz -x*]].
§ Finally from (2.47), (2.53), (2.55) we have:
.
A X * : L
(2.56) HR L =x*ll<l1en €] E'Bmax(1+€u1)+e“1(“+ﬁz)]
Hll-l
. “_{n—i-f“r“_x_-&- (1+ HIE] —f:z— (1+Bmax)||£ _1_5.\4_”
= ol -x*ll el -xel]
3 where
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(2.57) [1+n e][nmax(1+sp1)+ep1(z+_l)] o

a —
5 ! h n’."l‘

o= (1+w o (1+b ) (uu /B%)
6 1 max 1

choosing the values of ¢ and h so that a5+a6< 1 from (2.56) e

A

we have that if X ,X €S then x € S and oy
-n’'—n-1 -n-+1

lim X = x%
Xn x

n + «

3&
VXL

Theorem 2.3: Let ﬁ:jRN *iRN be twice continously differen-
T
tiable, F(x) = f (x) f(x) and L(x) be given by (2.15). Let

N
x* € R be such that ﬁ(f*) = 0, J(i*) is nonsingular and the

A AN NN
' A e .‘;I L J

,ﬂ{(.f.‘

following Lipschitz condition holds:

L] ."‘ IJ;'

"2y

=
'l

(2.58) HL(x)-L{x*) <yl x-x*|| vx S={x|llx-x*||<é}

€ -':
s

"
4!.\

In the iteration (2.21), (2.17), (2.18) let {hnh n=0,1,...,

.
. % Y "
4

be a sequence of positive numbers and let the linear system

SR
LI BN 3

- (2.21) be solved approximately in such a way that residual

‘(-

.

r given by (2.42) satisfy the condition (2.43) for some

v

(']

3

s
. l'l

»

forcing sequence {0 },n=0,1,..., such that 0<DB <8 <1
n n  max

n=0,1,... . Then there exists h such that if hn> h, n=0,1,...,

L]

x* is a point of attraction of the inexact method (2.21),

A

N

(2.17), (2.18) and the rate of convergence is:

IRy
\?‘n‘-'r
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-1 ~
(i) Q-superlinear if h_ < YIHVF(in)“,

for some Yl,n >0 and lim B
o n-»m

(ii) Q-quadratic if h;l < v HVF(x )H

and ﬁn < YzIIVF(_gn)II n > n_ for some Yoo
Proof: From Theorem 2.2 we have that x* is a point of attrac
tion of the inexact method (2.21), (2.17), (2.18) so that

we can assume that 1lim X = x*¥ and it remains to prove

n + o
the rate-of-convergence results

L e

We have:

(2.59)

<
N
N
~

and taking norms

Fr

(2.60) (1% ~x*[<IlA” N CIe (1+11A_-LCx) 1£_-x*11+

S YARAANAE

-~ ~ u
VF v %) - 3% — e —————
+11 (xn) F(x*)-L(x )(xn X )|‘+hnh

Y48

Let €,6,h be chosen in such a way that (2.29), (2.34), (2.35)

NSy

hold then there exists né such that for n> né+1,<§ne S = {zl

fIx-x*{|<é6} we have:

(2.61) & -x*|l< afB
-n+l1 — -

ey
A0F at bl ad N0 TR B4

HIF(x ) ll+(a. 2 o (12 —xxl[) ][ -x*
n X Zh + 3H5ﬂ x*DIR_-x*l

va l[% -x¥|l yHx -x ]

P RN
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and the desired rate-of-convergence

(2.41).
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o
P’ 3. Complementarity problems and nonlinear systems :.
'l
I v
‘ N N ) . :
" Let £f: R + IR be given, the complementarity problem ,
- associate with f is '
: o
4 s
R (3.1) x20 |
| (3.2) £(x) >0 1
—_— — —_—— (]
\
X (3.3) <x,f(x)> = 0 )
: 4
4
: and let ©:R + R be a strictly increasing function such that
o N
¥ 6(0) = 0. In ([17] Mangasarian has shown that x*€R is a so
' lution of the complementarity problem (3.1), (3.2), (3.3) N
\} ¢
‘. if and only if x* is a solution of the system of nonlinear O
i .
equations
h‘. ‘
. o
N ]
¥ (3.4) g{x)y =0 ;
o ‘ T :
- where g(x) = (gy(x),g,(x);...,gy(x))" and :
1 ‘ 3
. . . = © . -A, -0 . -9 .
: (3.5) g (x) = e(lf (x)-x [)-8(f (x))-0(x,) ‘
.’j i=1,2,...,N
! 3
3 A
' for later purposes let us introduce N
R
'i .l
. &
» ’ : T
'S (3.6) G(x) = g(x)" g(x)
. |
LY
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N
Definition 3.1: Let.)_c_*e]Rl be a solution of the complemen-
tarity problem (3.1), (3.2), (3.3) we will say that x* is
nondegenerate if x* + f(x*)> 0.

" Definition 3.2: Let f be continuously differentiable and

J(x) = %% be the jacobian of f wiﬁﬁ?respect to x, if for
n=1,2,...,N the principal minor ((335)),1i,j=1,2,...,n,is

L ge e g b

nonsingular we say that (J(i) has nonsingular principal mi-
nors.

In [17] Mangasarian has shown that if x* is a nondege-
nerate solution of the complementarity problem (3.1), (3.2),

(3.3) such that J(x*) has nonsingular principal minors and

@: R* R is a stricty increasing differentiable function such
e (¢}
that gg (0) + %; (t)>0 ¥t >0 then x* is a solution of the

ig
nonlinear system (3.4) and ;i (x*) the jacobian of g with
respect X is nonsingular. -

For simplicity we choose 8(t) = § so that in a neighbor
Lx hood of a nondegenerate solution of the complementarity pro-
) blem (3.1), (3.2), (3.3) the function g(x) given by (3.5)
has the same regularity properties of f(x). Given the local
character of the convergence theorems of section 2 this is
satisfactory. In section 4 the method for solving nonlinear

system described in section 2 will be applied to (3.4) with

t
e(t) = 2 for some test complementarity problems.

.. ttttt
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&

3

3 :{'
4. Numerical experience S5

| o
3 oy
' The inexact method (2.21), (2.17), (2.18) has been im- "
plemented as follows: .l

(i) since An is symmetric and positive definite the linear g

system (2.21) has been solved by the éonjugate gradient ;j,

method (C.G.) introduced by Fletcher and Reeves [20]. A

This procedure solves an N x N linear system in at most g}

+

N steps. Hovewer we stop the conjugate gradient proce- &k

LS,

dure after a number of steps which is usually conside- 0l

rably lower than N. In fact let §£k) be the approximate A

A

value for the solution s, of the linear system (2.21) %ﬂ

l...

obtained as the result of step k of the conjugate gra- ol

dient procedure., The conjugate gradient iteration is E

stopped after step m if . - i:

| A

A

(m) - .

Ha s ™ ~b |l <8 llb_|l

. n=n n = n n .
d

d

«',

ii) we have chosen: : .

2

= N = N

£,=3,=29 E

)

M = g = 1 SJ

3

D = I (the identy matrix) i

(o)

En =9 n=0,1,... ‘:
l\‘
33
l\

and the following very simple variation laws for the Q!
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25.

time integration step-length hn and the forcing sequen-

ce 6 :
n
hn+1 = min (IOhn,hmax) n=0,1,2,...
with h =1, h .= 1035
o max
-2 -Az
= = 2 .o o
ﬁn+1 anﬁn n=0,1,2, .

where Bo is given and &n is automatically chosen by the

program among the two values 0.1 and 0.5.

the program stops in any case the conjugate-gradients

iteration after N steps in order to avoid possible non

termination due to tne finite arithmetic of the compu-

ter.

Finally the method given by (2.21), (2.17), (2.18)

(i.e. exact solution of the linear system (2.21)) is obtain-

ed simply setting 60 = 0.

The stopping rule adopted is G(gn) < 10_10 for the ine-

method and G(in) < 10_10 for the "exact" method (i.e.
0). These methods have been coded in the Pascal program
language and the program has been run on a Hewlett-Pac-
0816 computer.

We have tested the proposed algorithm on three comple-

mentarity problems of which two are linear and one is non-

linear.

"p v, '\ b X )
(Yo "" ..l l. " |:‘.Q . ‘\" k.

The first problem considered arises as a one-dimensio-

(M Q,

™ 'H"q- SRRy
L S S S S

“X)
3

S5

haS X,

o

ey @SS N

w4

»
. -

- T

’

N

'l.l
s 4y
’

b
.

ATy W W
e

8 "
S

L TR A
- Pt . )



nal free-boundary problem in the lubrication theory of an

infinite journal bearing, i.e. a rotating cylinder separated

vy

from a bearing surface by a thin film of lubricating fluid

[21]. The finite-difference approximation used by Cryer

in [21] leads to

Problem A (called Problem 3D by Cryer): Find x, y_E]RN such

that
(4.1) . wi=g+Mx, w>0, x>0,
(4.2) - < W, X>= 0,

where M = ((Mij)), i,j=1,2,...,N is an N x N matrix with ele

M .
ments i given by

3 ce s s
(4.3) Mij _-(Hi+%) s - if 3 = i+l,
Moo= [, %+, %, iF g1
ij i+} i-z7 LY
M,. = -(H )3 if j = i-1
ij i-—% 4 b
M,, = 0, otherwise
1J

T
and g = (ql,qz,...,qN) is a vector with elements q; given by

(4.4) q = z [H, , - H, ,], i=1,2,...N

. 1
N + 1 i+3 i-3
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]
where
!
(4.5) H = H((i+}) —— "
: i+3 -2 N + 1

and the function H(y) is given by

L
o

Nt

‘I

~

(4.6) H(y) = —l-(1+ ecos 1y) >0 W
% 3

]

; "9 ¢
; : with d
3 '
i .!(
i (4.7) T =2, €= 0.8 &\
; X
We note that the matrix M given by (4.3) is symmetric and &
positive-definite. |

-

The second problem arises as a two-dimensional free- he

- boundary problem in the theory of the steady-state fluid 3
%3 flow through porous media. Some of these problems can be .
: formulated as a variational inequality after an ingenious ’
r

) transformation proposed by Baiocchi and others (ref. [3]). -
3 The discretization used on the "model problem"(([3], p. 4) o3
; leads to .
! "]
| >
) . N Ny
' Problem B: Find x, W €R  such that 3
¥ |‘
'} (4.8) w=9g+ Mx, w?>0, x > 0, 3
. X X, W Z xz 3
A

™

) (4.9) <wW,x>= 0 :
(o
9
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T N
where M, an N x N real matrix, and g = (ql,qo,...,qN) ER
are defined below.

Given nx,ny (positive integers) and X, Y (positive real

numbers), let

N=nn,

Xy
Dx = X/(nx+1),
Dy = Y/(n +1)
Y /y
a = Dy/Dx,

let A be the n_xn tridiagonal matrix having all the main
diagonal elements equal to 2(a+1/a), and the paradiagonal
elements (i.e. immediately above or below the main diagonal)
equal to -a, and let B be the n;‘x n_ diagonal matrix with
diagonal elements equal to -1/a. The matrix M is an n x n
matrix with a block-tridiagonal structure (ny X ny blocks),
having each main-diagonal block equal to the matrix A, and
each paradiagonal block équal to the matrix B. We note that
M is a positive-definite symmetric matrix. The vector g is
defined as follows. Given W(0 < W< Y), and using the Kronec-

ker symbol & ., let

1]
1 2
gL(Y) = 3(Y-y)
1 2 .
gR(y) = f(w'y) ) if y<w:
gR(YJ = O; if y i w;
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',
2 2 2 )
gp(x) = Y7/2-(Y"-W") (x/2X), g,
i“
gylx) =0, E‘
= ~ (3 D § j D '
rij Dx Dy + Gil a gL(J y)+ inx a gR(J y) .
'
+ Gij(l/a)gD(i Dx) + sn J,(l/a)gU(i Dx), ?
y 7
i = 1,2,...,nx, Jj = 1,2,...,ny. f%
0
Wt
The elements SEFLPFERENE I of q are given by '
3
. . . -
(4.10) q, = rij’ with k = (J—l)nx+1 . ]
Our last problem, which is defined below, can be inter-
preted as a finite-difference approximation of a nonlinear i-
. Pa
variational inequality. &
v'N
N [
Problem C: Find x, w €R such that ::‘
. A
3
(4.15)  w =Mx +p(x) +gq, w20, x>0 &
)
(4.16)  <w,x> =0 A
-~y
R
V.\
The problem dimension N, the quantities Dx, Dy and the ma- A
trix M are defined as in problem B, given n_,n »X,Y. The non E
N ”
linear term p(x) is a vector in R with components pi=x§, o
. T by
i=1,...,N. The vector g=(q1,q2,...,qN) is defined by equa- 3
tion (4.10) where Pij = Dx Dy sin (2™ iDx/¥), i=1,2,...,ﬁx,
L4
j=1,2,...,n .
) 3 2 y J‘
)
N
L
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scribed methods on Problem A,

2, 3 respectively.

......

________

C are shown in Tables 1,

The numerical results obtained with the previously de-

TABLE 1 - Results of Problem A
no = 1
n. of total n. of total n.
steps of C.G. steps of C.G.
(2.21) steps (2.21) steps
30 10 79 7 210
40 12 121 8 320
50 16 238 8 400
60 14 240 8 480
70 15 318 9 630
80 15 369 9 720
90 19 650 9 810
100 18 556 0 1000
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; TABLE 2 - Results of Problem B R
y (with X = 1.62, ¥ - 3.22, W = 0.84) E
X \
f n =1 n =0
o] (o]
n. of total n. n. of total n. h‘
- n_ n N steps of C.G. steps of C.G. )
. Y (2.21) steps (2.21) steps b
A 6 9 54 13 170 6 324 :
. 8 12 96 15 250 8 768 :
) 10 15 150 17 483 10 1500 "
K 12 18 216 19 746 12 2592 :;
, 14 - 21 294 19 867 14 4116 3
: 20 30 600 34 2405 21 12600 :
h .
!‘. »
i n
f ‘ TABLE 3 - Results of Problem C ’
" (with H = §5, Y = 5) rd
.
» T n =1 n .= 0
" o o
- n. of total n. n. of total n. N
- n_ n N steps of C.G. steps of C.G. L
Y (2.21) steps (2.21) steps -
5 5 25 5 37 4 100 :
» 10 10 100 6 99 5 500 N
: 15 15 225 8 278 6 1350 R
20 20 400 10 407 6 2400
i 25 25 625 10 535 8 5000 N
4 30 3¢ 900 10 893 '
;
J R
.-. N
2 *
-, ’
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\ rd
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i
y In tables 1, 2, 3 the advantage of using "inexact li- y
D K
> - near algebra" with respect to complete solution of the 1li- h
L)
. ¢
near system for problems A, B, C is shown, and the advantage 3
)
is increasing with the number of unknowns.
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Principal Investigator: Francesco Zirilli
Contractor: Universitd di Roma "lLa Sapienza"
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Jan. 1987-Jul. 1987

The research reported in this document has been made pos-
sible through the support and sponsorship of the U.S.
Government through its European Research Office of the
U.S. Army.

This report is intended only for the internal management
use of the Contractor and the U.S. Government.
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1.- Statement of scientific work done during the reporting

period

We worked on the idea of attempting to adapt the SIGMA
algorithm to work on complementarity problems with many in-
dependent variables. 1In particular we try to exploit the
following special features of the complementarity problem:
(i)
(ii)

the objective function is a piecewise quadratic
the objective function value to be found is zero.
SIGMA algorithm is much

The modified version of the

more efficient on complementarity problems than the original

one. However it 1is unable to solve complementarity problems
coming from mathematical physics such as the ones described
in the First Periodic Report with more than fifty or sixty
variables.

Further work is necessary.

2.- Research plans for the immediate future

In the immediate future we plan to pursue the following

objectives:

(i) study the behaviour of our methods on linear and nonli-
near complementarity problems where existence and uni-
queness of solution is not guaranteed

(ii) study the Karmarkar algorithm for linear programming as

8 continuation method involving the solution of a Cau-

chy problem for an ordinary differential equation.
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3.- Administrative actions

The following investigators are working on the contract:

Francesco Zirilli

Dipartimento di Matematica "G. Castelnuovo"
Universita di Roma '"La Sapienza"

00185 ROMA (1taly)

Filippo Aluffi-Pentini

Dipartimento di Metodi e Modelli
Matematici per le Scienze Applicate
Universit3da di Roma '"La Sapienza"
00185 ROMA (1taly)

Valerio Parisi

Dipartimento di Fisica

11 Universit3d di Roma (Tor Vergata)
00173 ROMA (ltaly)

In May 1987 Francesco Zirilli has presented an invited
talk: "Some physical 1ideas leading to global optimization
algorithms" to the S1AM Conference on Optimization held in
Houston (USA},may 18 .20, 1537.

After a final revision the two papers describing the
SIGMA package have been accepted for publication on ACM

Transactions on Mathematical Software.
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A §1. Statement of scientific work during the reporting period. Y
; )
The solution of complementarity problems in many variables _
3 is a difficult computational problem. In order to solve complementarity 3
i' problems we have pursued two goals: 2
i (i) construct efficient numerical algorithms -
Ty (ii) exploit the new computer architectures and in particular the pa- g
[ N
. rallel machines. -3
: The linear complementarity problem can be written as fol- .
lows:
[ Problem 1. Given A€ R" " and be R" find x € R such that .
v - 4
» J
v
. 4
. < > 0 -
: T r
: f(x)zAx + b >0 ]
<x, f(x)> =0 =
'(i ')
N Let us define the function F: IRn+ R 3
¥ .
] g
\ . -
‘A ) F(.)_(.) = E Fl(x)
o i=1
. where b
)
3 %
¥ ',
F.(x) = x? if x, >0, x, <f (x)
b i— i - i i
i~ |
o 2 .
~ = X, +f,2 if x, <0, f <0 :
~ i i i i .
: - if f <x,f >0 ’
. i i— i-
»
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It is easy to see that F(x) > 0 and that F(x) = 0 if and
only if x is a solution of the linear complementarity problem (Problem
1). Problem 1 is equivalent to the follocwing global optimization pro-
blem:

Problem 2. Find the global minimizer of F, verify that the function

value at the global minimizers of F is zero.

We remark that when the linear complementarity problem has
many solutions the function F will have many global minimizers with
zero function value, when the linear complementarity problem has no
solutions the global minimizers of F will correspond to a positive
function value.

In order to solve Problem 2 we have considered two algo-
rithms:

(1) CSIGMA. A modified version of the SIGMA algorithm that makes use
of a conjugate gradient technique in the time integration step.
This algorithm is stochastic in nature and is explicitely designed
for the search of global minimizers. The initial guess used is
x, = 0

(2) GRACON. A conjugate gradient minimization technique applied to
the function F from the initial guess X, = 0.

The algorithms CSIGMA and GRACON have been tested on three
test problems:

Test Problem 1'is the linear complementarity problem in lubrication

theory proposed by Cryer and described in detail in the First Periodic

Report.

Test Problem 2: Let B be a random matrix with gaussian elements of

_ T . . s
mean zero and variance one and let A = B B. The matrix A is positi-

ve definite (to be precise A could have zero as an eigenvalue with pro

03
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bability zero) so that the corresponding linear complementarity pro-

blem has a unique solution for any b.

Test Problem 3: Let B be as in Test Problem 2 and let A = B. Since

A = B is indefinite in general the corresponding linear complementari-
ty problem may have many solutions or no solution. We choose b such
that the linear complementarity problem has at least one solution.
Moreover we know this solution.

The results obtained with CSIGMA and GRACON are shown in
Table 1 and Table 2.

Table 1 CSIGMA

N Test PROBL 1 Test PROBL 2 Test PROBL 3
IsucC NFEV ISUC NFEV I1suC NFEV
2 1 11.772 1 8.459 2 18.673
4 1 10.361 1 48.504 2 39.141
8 1 34.826 1 44.795 2 58.175
16 1 68.717 1 51.849 2 86.336
32 1 130.851 1 87.298 2 2.829.481
64 1 156.815 1 330.777 -1
100 1 659.009

-------------
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N Test PROBL 1 Test PROBL 2 Test PROBL 3 ?'_

h +

"

ISUC  NFEV ISUC  NFEV ISUC  NFEV 2

2 1 15 1 25 2 2 ﬁ?

4 1 36 1 88 1 65

o

8 1 77 1 109 1 122 I
l.\

16 1 240 1 198 2 384 :-‘_
32 1 708 1 627 0 479 ’
64 1 3.158 1 1.066 0 635 3
2

100 1 7.785 1 1.523 0 1.092 X
-
»

Legenda ::.:.
%

N = number of independent variables 4
ISUC = - 1 maximum allowed time has been exceeded :_‘
0 failure c- f

o

1 success. The solution known a priori has been found

2 success. A solution different from the one known a priori

* £ 5

W
has been found. o

NFEV = number of function evaluations. N
v
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From Table 1 and Table 2 we can see that CSIGMA appears

to be robust but not very efficient while GRACON appears to be effi-

:;, cient but not very robust. :
: Further res:arch is pursued now to build an efficient and :
-. robust aigorithm that combines the stochastic character of CSIGMA
;' (robustness) with the local properties of GRACON (efficiency). .
-: The second goal,that is the possibility of using a SIGMA algo

'.’, rithm on a parallel machine, has been studied (see §4 Appendix). -
! §2. Research plans for the immediate future. g
E In the immediate future we plan to pursue the following ob- u
\_"': jectives: - ‘
h:\: (i) go back to linear and nonlinear complementarity problems that
:‘ come from physical problems in order to try to find some more ef t
: ficient algorithm

g (ii) study the special case of linear programming in the context of

::, continuation methods. \'
g

.7 §3. Administrative actions.

:}: In September 1987 Francesco Zirilli has presented the invited

: talk: "A parallel algorithm for global optimization inspired by quan- b
~; tum physics" to the conference '"Vector and parallel processors for X
j scientific computation 2" sponsored by the Accademia Nazionale dei Lin \

cei and the 1BM Italia in Rome.
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The paper: E
(1) F. Aluffi-Pentini, V. Parisi, F. Zirilli: 'Test problems for global ? ,
o
o
optimization' has been accepted for publication in The Computer Journal. )
: (2) F. Aluffi-Pentini, V. Parisi, F. Zirilli: "A parallel global optimi- f
zation algorithm inspired by quantum physics'' has been accepted for -3
3 :"-
i publication in Calcolo. "
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§4. Appendix: F. Aluffi-Pentini, V. Parisi, F. Zirilli: "A parallel

global optimization algorithm inspired by quantum physics," to ®

appear in Calcolo.
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;:0' A parallel global optimization algorithm inspired by quantum physics"':t

: L)

17 Filippo Aluffi-Pentini

,;‘,‘{ . Dipartimento di metodi e modelli matematici per le scienze applicate
o Universitd di Roma ''La Sapienza"
¥ Via Antonio Scarpa 10

K 00161 Roma - Italy

40

[7< Valerio Parisi

o Dipartimento di Fisica

LI IT Universit2 di Roma (Tor Vergata)

00173 Roma - Italy

~ Francesco Zirilli

> Dipartimento di Matematica G. Castelnuovo
Universitd di Roma 'La Sapienza"

00185 Roma - Italy
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N tInvited talk presented at the symposium 'Vector and parallel processors
< for scientific computation-2'" Accademia Nazionale dei Lincei and IBM
Italia, Sept. 21-23, 1987. '

o iThe research reported in this document has been made possible through
B the support and sponsorship of the U.S. Govermment through the European
¥ Research Office of the U.S. Army under contract n. DAJA 45-86-C-0028,
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§1. Introduction

Let RY be the N-dimensional real euclidean space, and let
» X = (xl,xz, cee xN)T € ]ll\}N’ the superscript T meaning transpose,
for x,y € R X,y = ) X;y; 1is the scalar product between x and

i
. 1=1
Y, and [x} = <x,©% is the euclidean nomm of Xx.

In this paper we will consider two problems, that is:

': (i) Problem 1. Solving systems of equations. Let f= RN +1 be a

Y given map, solve the system of equations

-. i

W 1.1 flx) =0

)

1 thet is find the points 5* ¢ R’ such that

K £x) = 0

&

.

. (ii) Problem 2. Global optimization. let g : ]RN +R be a given func-
p tion, find the points x* ¢ R such that

/ |

: (1.2) g(x" s g(® VxeR

N It is easy to see that Problem 1 can be reduced to Problem 2, in
* fact, x is a solution of £(x) =0 if and only if g(x) = | £ 2<0
. that is x 1is a global minimizer of g. Moreover, isolated solutians of
; the system of equations become non-degenerate minimizers of g. When

o

[ Problem 1 is reduced to Problem 2 is known a priori that the minimizers

e

of g we are interested in correspond to function value g = 0. This
o feature is of great value since it gives us the possibility of recognizing

' a global minimizer from the function value in a point.

| e - .

)
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In recent years several stochastic algorithms have been proposed
to solve the global optimization problem. We remember the simulated
annealing method of Kirkpatrick, Gelatt and Vecchi {1] and the bayesan
approach of Rinnooy. K.an and coworkers [2] while we have been advocating a
method inspired by statistical and quantum rechanics [3]. Let us remember
briefly the method proposed in [3]; 1let us consider the Cauchy problem
(1.3) dg = -Vg(g) +e(t)dw
.49 &0 =x. -
where w(t) is a standard n-dimensional Wiener process g(x) is the
function whose global minimizers we are interested in that we assume twice
continuously differentiable with only a finite number ot global minimizers
and such that:

(1.5)  lim g(x) ==
I xllo

(1.6) J exp(-azg)dx < Y a ¢ R\{0}
R’

Finally, e(t) 1is a continuous function such that

(1.7 lim e(t) = 0

o

When €(t) = o is a constant, equation (1.3) is known as the
Smoluchowski -Kramers equation [4]. This equation is a singular limit of

the Langevin equation when the inertial terms are neglected. The

Smoluchowski-Kramers equation has been used widely by solid state physicists

and chemists to study physical phenomena such as atomic migration in crystals

A A A
or chemical reactions. In these applications £ = (21('1‘/m)i wvhere T 1is
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{3 ‘I‘
. é
Y ‘ the absolute temperature, K the Boltzmann constant, m the reduced f
D J
X mass of the electron and g(x) the potential energy, so that (1.3) "
[ Y.
represents diffusion across potential barriers umder the stochastic

4 forces eydw. (hoosing € = e(t) with lim e(t) = 0 corresponds to LN
- ' . oo ¥
- ~ freezing the system that is T + 0. ..:
. Y

In order to compute the global minimizers of g in [3) we have Y

3 proposed to numerically integrate the trajectories of (1.3), (1.4). In 4
! fact, if e€(t) goes to zero sufficiently slowly (adiabatic freezing) the
. - o
stochastic process £(t) solution of (1.3), (1.4) will converge in law

4 to a random variable concentrated at the global minimizers of g. 1In K
¥ h
" section 2 we discuss briefly the numerical aspects of this method for t
3 ’d
global optimization and in section 3 we present the advantages of a s
< parallel version of this method. g
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_;' §2. The numerical integration
N ' i
R :
o In 5], (6] an implementation in a FORTRAN program of the method

f'. -~ introduced in (3] has been realized for serial machines. A numerical

vl | method to obtain the global minimizers of g consists in a numerical in- ,
‘ tegration procedure for the Cauchy problem (1.3), (1.4). The efficiency

';.:, of the numerical method for global optimization cbtained depends on the |
:u;':.. numerical integration scheme d19s§n, so that is essential to make a

oy judicious choice. In making this choice we should consider two facts:

:; (i) to the purpose of cbtaining global minimizers of g only.

o asymptotic values of the trajectories are relevant so that

" i highly accurate schemes are unnecessary.

\\ : (ii) in order to give a chance to the random forces to take the

\4': trajectory out of local minimizers many time integration

‘.. steps should be camputed so that anly methods with a very

': cheap step can be considered. !
‘ A With this in mind in [5], [6] we have chosen the explicit Euler method ‘
‘_'4 with steplength cont;'ol to guarantee stability. That is, gx approxima- %
f’% " tion of &(t) solves the following difference equation:

3

;:“' (2.1) & " &1 = 'hK-IVg(gl(-l) + e(tgy) (‘il("il(-l) k=1,2, ...

f: (2.2) g =%

. K-1

3 where t; =0 tK:iZO hi,hy >0 and we =w(ty) K=0,1,2,... . To

- avoid the degredation of the numerical algorithm when g is ill conditimmed

fE the algorithm implemented in [5}, [6) provides some form of automatic

»
=

s

rescaling. Since in the right hand side of (2.1) there is the sum of a

:
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@ deterministic temm hl(-l Vg(_gx_l) with a stochastic temm e(tK_l) (Wy ¥y 1)
: when they are of the same order of magnitude the effort necessary to compute
" accurately Vg (N+1 finction evaluations if forward finite differences

|’

X are used) can be wasted adding e(tx_l) (y_K-v_vK_l) . Therefore we replace t]'.xe
” ' gradient Vg with a "random gradient” as follows: let r be an

I

N-dimensional random vector of length one uniformly distributed on the

X<

{E N-dimensicnal unit sphere. Then for any given (non-random) vector V e l{q
o

'::. its projection along r is such that

2 ' (2.3) NE(<, w1 =V

%

k. where E(*) 1is the expected value. This suggests to replace the gradient
12e8

’ vg(g_K) with the 'random gradient':

’,

o

’ (2.4) *_{_(_&_K) =N <r,Vg(§K)> T

ot

' we note that only 2 function evaluations (independently of N) are neces-
Ay

) sary to evaluate y_(gK) with forward finite differences. Finally, due to
o
[/, its stochastic nature the initial value problem (1.3), (1.4) has an infinite

x4

number of trajectories even when the initial condition (1.4) is fixed. Since

F&d

N we are looking for trajectories that diffuse through local minimizers it

:§ ‘is natural to compute several trajectories of (1.3), (1.4) simultaneously

._ and independently (7 trajectories in the actual implementation of (5], [6]

: on a serial machine) and compare them at the end of some suitable

E ""observation period" to choose which trajectory is worthwhile to continue

; to compute and which one should be abandoned on the basis of some heuristic

;-.f‘ criterion. This last feature of our algorithm makes him a natural candidate
::E for parallelization since when more than one processor is available indepen-

i

dent trajectories can be computed very efficiently on different processors.

pe 3 J‘.Il
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§3. The parallel algorithm

In the IBM ECSEC Center in Rome a numerical experimentation on a
parallel version of the algorithm for global minimization described in
section 2 has been made.  Since the heaviest part of the computation, that
is the integration of several trajectories of the stochastic initial value
problem (1.3), (1.4), can be done independently and simultaneously by
several processors. The parallel version of the algorithm will have a
very high speed-up factor. The numerical e;@érimentation has been carried
out on the 37 test problems presented in [7] and used to test the serial
algorithm in (5], these problems include the Dixon-Szego functions and the

Levy-Montalvo functions.

AT T

In the following table 1 for each one of the 37 problems are
reported the following times (in msec) measured by a library routine:

T = execution time of the algorithm executed serially (only one processor
active)

T1 = execution time of the processor 1 that we use as master processor so
that Tl is the execution time of the algorithm executed in its
parallel version (7 processors active, 7 trajectories computed)

T2,T3, ... , T7 execution time m the processor 2,3, ... , 7 respectively.
Each processor computes one of the 7 trajectories. Processor 1
besides being the master computes one trajectory.

Finally, the table for each of the 37 problems reports the following

quantities:
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S1=T1+T2+ ... +T7

S2=T2+T3+ ... +T7

%2- = agverage execution time for a parallel processor
% = speed up time. With 7 processors we have TTl— s 7.

The table reports also the total on all the 37 problems of the previously
described quantities. It can be cbserved that same data are inconsistent
(for example T1 < T2) but this is due to experimental errors in the

measurement. The total speed-up factor is 6.36, that is 91% of the maxi-
mum speed-up factor attainable 7. As expected the algorithm is very well

suitable for parallelization.
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